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Abstract. It is demonstrated how the hydrodynamic force and moment of force acting on a solid sphere may be 
calculated when it is placed at rest at an arbitrary position in a two dimensional flow at zero Reynolds number 
in which the region of flow is bounded by either an undeformable planar free surface or by a plane solid wall. 
The results so obtained are used to calculate the motion of a freely moving solid sphere in an asymmetric vortex 
in the presence of an underformable free surface. It is seen that the sphere, depending on the direction of the 
undisturbed flow, will either spiral into or out of the vortex. This implies that when a dilute suspension of such 
spherical particles undergoes such a vortex motion in the presence of the free surface, the vortex will either fill up 
with particles from the surrounding flow or become devoid of particles. 

1. Introduction 

Consider a solid sphere of a radius a translating with velocity V and rotating with angular 
velocity/2 in an unbounded fluid of viscosity # undergoing a prescribed undisturbed fluid 
flow (with velocity U(r) at position r) for which the Reynolds number is zero so that inertia 
effects on the fluid flow are negligible. The hydrodynamic force F and moment of force G 
(about the sphere's centre) acting on the sphere are then given by Fax6n's laws [1,2] as 

F = 67r#a [UIc - V] + #Tra3V2Ulc, (1.1a) 

G = 87r#a3 [ ~ ( V  x U ) [ c  - ~2] ,  (1.1b) 

where [C denotes evaluation at the point occupied by the sphere's centre. 
Completely general results like (1.1) are, however, not known for flows which are bounded 

by solid walls or free surfaces. Instead, if the sphere's radius a is very much smaller than 
the distance (L say) of the sphere from any of the boundaries, the method of reflections may 
be used to obtain a solution as an expansion in the small parameter a/L. This has been done 
for many situations in which the fluid is bounded by solid surfaces, with various authors 
considering, for example, boundaries in the form of a single plane wall, a pair of parallel plane 
walls, or an infinitely long circular cylinder (see Happel and Brenner [3], Chapter 7). 

When the distance L of the sphere to the boundaries is of the same order of magnitude 
as the sphere's radius a, then relatively fewer problems have been solved. These involve 
rather simple boundaries (such as a plane solid wall or a concentric solid spherical wall) with 
the undisturbed fluid velocity U(r) taking on a particularly simple form. Thus O'Neill [4], 
Goldman et al. [5] and Brenner [6], using spherical bipolar coordinates, obtained solutions for 
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a purely translating solid sphere (I-/-- 0 ) in a quiescent fluid (U-- 0 ) bounded by a solid plane 
wall for arbitrary distances between the sphere and the wall. Also, using the same method, 
solutions for a purely rotating solid sphere (V -- 0 ) in a quiescent fluid (U-- 0 ) bounded by a 
plane solid wall have been obtained by Jeffery [7], and Dean & O'Neill [8], whilst Goldman et 
al. [9] obtained the solution for a sphere at rest (V z O  --0 ) in a planar shear flow bounded by 
a solid wall. Results for similar problems involving a solid sphere moving in a fluid bounded 
by an undeformable free surface may be obtained, by making use of symmetry, from the 
two-sphere problems considered by Goldman et al. [10] (see also §4.2 of present paper). 

The above results are extended in the present paper in which the hydrodynamic force and 
moment of force on a solid sphere placed at rest at a general position in a fluid flow are obtained 
for zero Reynolds number when the fluid is bounded by either an undeformable planar free 
surface or a planar solid surface and is undergoing a prescribed two dimensional undisturbed 
flow of general polynomial form (with degree < 10).Thus, in §2, the general theory is given for 
obtaining the force and moment of force on the sphere whilst in §3 all the various polynomial 
two dimensional undisturbed flows are listed for both flows bounded by an undeformable free 
surface and bounded by a solid surface. Then, in §4, the general theory given in §2 is applied 
to all the various undisturbed flows listed in §3. 

The results obtained in §4 are then applied in §5 to a particular example in which the fluid, 
bounded by an undeformable free surface, undergoes a two dimensional undisturbed flow 
which is in the form of a bounded vortex neighbouring the surface. The motion of a freely 
moving sphere (i.e. one for which there is no external force or moment of force about its 
centre acting on it) in the vortex flow is thus obtained. It is shown that the sphere moves into 
the vortex and spirals towards the vortex centre, ending up close to the zero velocity point of 
the vortex. In this process the path of the sphere centre is not along a streamline but migrates 
steadily from one streamline to another. It is also noted in §6 that by considering the same 
undisturbed flow, but with the velocity reversed everywhere, a sphere initially in the vortex 
spirals outwards and finally leaves the vortex. This means that for a dilute suspension of such 
spherical particles undergoing such flows, the spheres either concentrate in or leave the vortex 
(depending on the direction of the undisturbed flow). 

This behaviour of particles migrating across streamlines and particles in a dilute suspension 
tending to become more (or less) concentrated in certain regions of the flow is well known to 
occur at non-zero Reynolds number as a result of the effects of fluid inertia. However, it is not 
so well known that similar effects can occur at zero Reynolds number purely as a result of the 
effect of boundaries. At non-zero Reynolds number, for example, a freely moving small sphere 
in Poiseuille flow along either a circular cylinder or between parallel solid walls will move 
across streamlines to a position approximately half way between the centre and the wall [11, 
12, 13, 14, 15, 16], resulting in particles in a dilute suspension becoming more concentrated 
at such a position, a phenomenon known as the 'tubular pinch' effect. However, at zero 
Reynolds number, while similar effects do not occur for the relatively simple flows previously 
studied (such as Poiseuille flow or shear flow), they can occur for more complicated flows 
with boundaries present (such as the vortex flow considered here in §5). This phenomenon 
of particles moving across streamlines and, in a suspension, tending to concentrate (or move 
out of) certain regions of the flow is, at zero Reynolds number, an effect of the boundaries 
present. If fact, it is shown in §6 that for an unbounded flow (for which Fax6n's laws (1.1) 
apply), a dilute suspension of particles has no tendency for the concentration to increase (or 
decrease) in any region of the flow, although locally individual particles can move across 
streamlines. 
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Fig. I. Solid sphere placed in a flowing fluid occupying the half-space rl > 0 and bounded by either an undeformable 
• free surface or a solid surface at rl = 0. 

2. Force and torque on a solid sphere 

Consider a fluid of viscosity # occupying the half-space rl > 0 with (rl,  r2, r3) being a fixed 
set of Cartesian coordinates. This fluid is assumed to be undergoing a prescribed flow at zero 
Reynolds number with velocity U, pressure P and stress tensor Eij so that for rl > 0 

Eij,j = O, (2.1) 

Ui,i = O, (2.2) 

where the stress t ensor  ~i j  is 

~ j  = -P,~j + u(u~j + uj,d. (2.3) 

Into this flow a solid sphere of radius a is placed at rest (with no rotation or translation) with 
its centre at position (h, O, O) where h > a [see Fig. 1]. We will demonstrate in this section 
how the force and torque on this sphere may be calculated. With the sphere present we take the 
velocity to be u, pressure to be p, and stress tensor to be aij, so that the disturbance velocity 
and pressure produced by the presence of the sphere is (u - U) and (p - P) respectively. Then, 
like the undisturbed flow (U, P), the flow (u, p) with the sphere present must satisfy 

(rij,j = O, (2.4) 

Ui,i ---- O, (2.5) 

where 

oij = -p61j + tz(ul,j + uj,i). (2.6) 

The no slip boundary condition then requires that on the sphere surface S 

u i = O ,  (2.7) 



180 R.G. Cox 

whilst, since the disturbance flow must tend to zero at infinity, 

ui ": Ui as r --~ c~, (2.8) 

where r = ~ is the distance from the origin O of coordinates. For the planar boundary 
rl = 0 of the fluid region we will consider two situations, the first being that in which rl -- 
0 is an undeformable free surface (discussed in sub-section 2.1) and the second being that in 
which the fluid is bounded by a stationary plane solid wall at rl = 0 (discussed in sub-section 
2.2). The former situation of an undeformable free surface would occur with a liquid bounded 
by an interface (at rl = 0) with infinitely large surface tension, there being either no fluid or 
a fluid of negligible viscosity in the region rl < 0. At such a boundary one would have zero 
normal velocity and zero tangential stress, so that for the flow (U, P) one must have 

U l = 0  E 2 1 = E 3 1 = 0  o n r l = 0  (2.9) 

and for the flow (u, p) 

U 1 = 0 0"21 = a31 = 0 on rl = O. (2.10) 

For the situation in which the fluid is bounded by a stationary plane solid wall at rl = 0, the 
fluid velocity must be zero there so that for the flow (U, P) one must have 

UI = U 2 = U 3 = 0  o n r l = 0  (2.11) 

and for the flow (u, p) 

~1 ~-~ ~2  = U3 ~-~ 0 o n  r l  = O. (2.12) 

2.1. FREE SURFACE AT r l  = 0 

Consider a fluid bounded by an undeformable free surface at rl -- 0 so that the undisturbed 
flow (U, P) satisfies (2.1)-(2.3) in the region rl > 0 with boundary conditions (2.9) on rl = 0 
whilst the flow (u, p) with the sphere present satisfies (2.4)-(2.6) in the region rl > 0 with 
boundary conditions (2.10) on rl - 0. 

We define VuTik as the ith component of the zero Reynolds number velocity field produced 
by the sphere (of radius a with center at (h, 0, 0)) translating in the k-direction with unit 
velocity in an otherwise quiescent fluid bounded by the undeformable free surface at rl 
-- 0. The corresponding pressure field is defined as VpTk whilst the /j-component of the 
corresponding stress tensor is defined as VaTijk. Then in the fluid region we have the flow 
( VuTk, VpTk satisfying 

F(TTijk,j = O, ( 2 . 1 3 )  

FuTik,i = 0, (2.1 4) 

where 

FaTi jk  = -- FpTk~ij  ']- #(FUTik,  j q- FUTjk,i) , (2.15) 

with the boundary condition on the sphere surface S of 

F~ZTik = ~ik, ( 2 . 1 6 )  
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Fig. 2. Definition of the fluid volume V bounded by the hemispherical surface Sn of radius R, the boundary W at 
r~ - 0 and the surface S of the sphere. 

with 6ik being the Kronecker delta), the boundary condition on the undeformable free surface 
W at rl ffi 0 of 

FUT1 k = O, F(TT21k ---= FO'T31k = 0, (2.17) 

whilst at large distances we must have 

FUTi k "-'* 0 as r ~ oc. (2.18) 

Since (ui, p) and  (FUTik,rpTk) are both zero Reynolds number (creeping) flows within the 
region rl _> 0 exterior to the sphere surface S, we apply the Lorentz [17] reciprocal theorem to 
these flows for the fluid volume V contained within a large sphere, Sn of radius R(R  > > h) 
with centre at the origin O [see Fig. 2]. We thus obtain 

fS  (uiFo'Tijk -- FuTik(Yij)n j d S  = 0, (2.19) 
+SR+W 

where nj is the unit normal vector directed out of V and dS is an element of surface area. 
This surface integral in (2.19) is taken over the surfaces S, SR and the part of W that form 
the boundary of the volume V. From the boundary conditions (2.10) and (2.17), it is seen that 
the integral over W in (2.19) is identically zero whilst from the boundary conditions (2.7) 
and (2.16) it is seen that the integral over the sphere surface S is equal to the force Fk on the 
sphere due to the flow field (u, p). Thus 

Fk = /~ (FUTikO'ij -- uiFffrijk)nj dS. (2.20) 
R 

It is assumed that the given flow field (U, P) is not singular at the origin O on the boundary or 
anywhere else in the fluid region rl _> 0 so that U ( and P) may be expanded as a Taylor series 
in the coordinates r l ,  r2, r3. A general term in this expansion for U will be homogeneous in 
r '~ where n is some positive integer (or zero). Since the problem of solving for the force and 
torque on the solid sphere placed in this flow is linear, we need only consider an undisturbed 
flow in which U is proportional to r '~ (where n is a positive integer) so that the corresponding 
pressure P and stress tensor Zij are proportional to r n-1. The asymptotic forms of u i and Grij 
for r ~ c~ must then be 

ui = Ui( of order r n ) + ( terms of order r -1 , r - 2 . . . ) ,  (2.21) 
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aij =Eij  ( of order r n- 1 ) + ( terms of order r -2 ,  r - 3 . . . ) .  (2.22) 

Also, the asymptotic forms of F~ZTi k and VtrTik for r ---, oc must likewise be 

VuT~k = terms of order r - l ,  r - 2 . . .  (2.23) 

FcrTijk = terms of order r-2~ r -3 . . . .  (2.24) 

In deriving the asymptotic forms (2.21)-(2.24) it has been noted that the disturbance velocities 
(ui - Ui or FUTik) produced by the sphere as r ~ oo be the flows produced by a point force, 
a point force doublet, etc. and so contain terms of order r -1 , r -2 . . . .  

By substituting the asymptotic forms (2.21)-(2.24) for r --+ oo into the integral in (2.20), 
we see that by equating terms of order R ° in (2.20) in the limit R ~ o o ,  we obtain the 
hydrodynamic force F on the sphere as 

Fk = fsn (-n-i)UTik~ij - - ( - n - l )  F ffTijkUi)nj dS, (2.25) 

where (_n_l)FUTik is the term homogeneous in r -n-1 in the asymptotic expansion of FUTik for 

r ~ c~ and where (-,~-1)F6rTijk is the corresponding stress tensor (and hence is homogeneous 

in r -'~-1 as r ---* c~) which is given by 

Fo F ( ( - n - l )  FUTik,j + ( - n - l )  ~ , (-,~-l) Tijk = ---(n-l) PTk6ij + # FuTjk,i] (2.26) 

where (_n_l)FpTk is the corresponding pressure, being the term homogeneous in r -n -2  in 

the asymptotic expansion of the pressure FpTt: for the limit r --, c¢. 
In order to determine the moment of force G on the stationary solid sphere S about its 

centre (C say) due to the flow (u, p) we define FuRi~: as the ith component of the velocity fluid 
(for zero Reynolds number flow) for the flow produced by the sphere rotating wth its centre C 
at rest with unit angular velocity directed in the positive k-direction in an otherwise quiescent 
fluid bounded by the undeformable free surface at rl = 0. If the corresponding pressure field 
is defined as FpRk and stress tensor field as Ramie, then in the fluid region rl > 0 we have 
the flow (FURk, FpRk) satisfying 

Famjk5 = O, (2.27) 

Fum~,i=O, (2.28) 

where 

%n jk = -FpRk ,j + .  (%,k, j  + 

with boundary condition on the sphere surface S of 

YuRik = eikjrj, 

(2.29) 

(2.30) 

where eikj is the alternating tensor and f is the position vector relative to the centre C of the 
sphere (see Fig. 1). On the undeformable free surface W at rl -" 0, the boundary condition 
is 

Funla = 0  Fan2ta =Fa31k = 0 ,  (2.31) 



whilst at large distances, 

FURik ~ 0 as r ~ c~. 
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(2.32) 

By applying the Lorentz [17] reciprocal theorem to the flows (ui, p) and (FuRi~, FpRk) we 
obtain in a manner similar to that for (2.19) 

fS+SR+w (UiFff Rik -- FuRikffij ) nj dS =O. (2.33) 

Again the integral over W is identically zero whilst that over the sphere surface S is, by (2.7) 
and (2.30), equal to the moment of force Gk on the sphere about its centre C due to the flow 
field (u, p).Thus 

Gk = fSR (FURikffiJ - uiF(YRijk) hieS. (2.34) 

Proceeding as before, if Ui is again proportional to r n (where n, is a positive integer), we 
obtain the moment of force G on the sphere about its centre C by equating terms of order R ° 
in the asymptotic form of (2.34) for R ---+ ~ as 

Fu (2.35) Gk = fsn ( ( -n - l )  R, kEij --(-n-l) FaR,jkU~) njdS, 

where (_,~_ 1)Funik is the term homogeneous in r -n- 1 in the asymptotic expansion of FuRik 
for r ~ ~ and where (_n_l)FffRik is the corresponding stress tensor (homogeneous in r - n - 2 )  

given by 

Fa ~ 6 ((-n-~) ( - n - l )  Rijk = - - ( - n - l )  PRk ij ~- # FURikj + ( - n - l )  FURjk,i) (2.36) 

with (_n_l)FpRk being the corresponding pressure and hence is the term homogeneous in 

r - n - 2  in the asymptotic expansion of the pressure FpRk for the limit r ---+ <x~. 

2.2. SURFACE AT r 1 ffi 0 

We consider now a fluid bounded by a solid wall at rl ffi 0 (i.e. at the surface W) so that the 
undisturbed flow (U, P) again satisfies (2.1)-(2.3) in the region rl > 0 but with boundary 
conditions (2.11) on rl ffi 0 whilst the flow (u,p) again satisfies (2.4)-(2.6) in the region rl > 0 
but with boundary conditions (2.12) on rl -- 0. 

We proceed as in the previous sub-section and define SUTi k in a manner similar to FUTi k as 
the ith component of the velocity field (for zero Reynolds number) for the sphere translating 
with unit velocity in the k-direction in an otherwise quiescent fluid but bounded by a solid 
wall at rl ffi 0, so that SUTik satisfies equations like (2.13)-(2.15) with boundary conditions 
like (2.16) and (2.18) but with boundary condition (2.17) on rl ffi 0 replaced by 

SUT1 k : SUT2 k ~- SUT3 k = O. (2.37) 

Likewise we also define SURik in a manner similar to FuRik as the ith component of the velocity 
field (at zero Reynolds number) for a sphere rotating without translation about its centre C 
with unit angular velocity directed in the positive k-direction in an otherwise quiescent fluid 
but bounded by a solid wall at rl -- 0, so that SURik satisfies equations like (2.27)-(2.29) 
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with boundary conditions like (2.30) and (2.32) but with boundary condition (2.31) on rl - 0 
replaced by 

SttRlk = StiR2 k = SUR3 k ---- O. (2.38) 

With SUTik and SuRik replacing FuTi k and FUnik respectively in the previous sub-section 
we obtain the force F and moment of force G (about the sphere centre C) acting on the sphere 
placed at rest in the flow (U, P) bounded by a plane solid wall at rl -- 0 as (see (2.25) and 
(2.35)) 

Fk = f s  ((-n-')SuTit2'J--(-~-1) SaTijkUi)njdS, (2.39) 
R 

ek  • fSR ((-n-1)S~RikY~iJ--(-n-l) SO'RijkUi)njdS, (2.40) 

where  (_n_l)S~Tik and (_n_l)SURik are the terms homogeneous in r -n-1 in the asymptotic 
expansions of Surik and sumk respectively for r --~ oc, with (_n_l)SO'Tijk and (_n_l)Samjk 
being the corresponding stress tensors. 

3. The undisturbed flow field (U, P) 

For simplicity we will consider only given undisturbed flows (U, P) which are two dimensional 
(in the rl,  r2 plane say) with Uffi (U1, U2, 0) in which [/1, U2 and P are functions only of the 
coordinates  r 1 and r2. The velocity field U, since it satisfies the continuity Eq. (2.2), may then 
be expressed in terms of a streamfunction ~ with 

UI = Or2 U2 = - Or---~" (3.1) 

The Eqs. (2.1) and (2.3) for U then show that ~b satisfies the biharmonic equation in the rl, r2 
plane, i.e. 

V4ff) ~- 0. (3.2) 

If we use plane polar coordinates p, 0 in the rx, r2 plane as defined in Fig. 3, then (3.1) may 
be written as 

10~b O~b 
Up = P 00' Uo = - 0---fi' (3.3) 

where Up and Uo are respectively the p and 0 components of U. The biharmonic Eq. (3.2) 
then yields 

1 o 1 o2 2 
~p2 + p~p  + ~ - ~ ]  ~b=0.  (3.4) 

If we take ~b to be proportional to pN (where N is a positive integer), the corresponding 
velocity U is then proportional to r N-1 so that in the previous section the integer n, which 
was used is n -- N - 1. The solution of (3.4) with ~b of such a form may readily be shown to 
be. 

~b = pN (al sin NO + a2 cos NO + a3 sin(N - 2)0 + a4 cos(N - 2)0). (3.5) 
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Fig. 3. Plane polar coordinates (p, 0) used to define the two dimensional undisturbed flow. 

where al ,  a2, a3 and cA 4 are constants. The pressure field P corresponding to this flow may 
readily be shown to be given by 

P = 4 (N - 1) oN-2 (a3 cos (N - 2) 0 - a4 sin (N - 2) 0). (3.6) 
# 

In the following two subsections we consider separately the undisturbed flow field deter- 
mined by (3.5) and (3.6) for the situations of an undeformed free surface and of a solid surface 
a t r l  = 0 .  

3.1. FREE SURFACE 

For an undeformable free surface at rl = 0, the boundary conditions (2.9), when expressed in 
terms of the stream function ~b, reduce to 

71" 71- 
~b = 0 on both 0 = - ~ and 0 = + ~,  (3.7) 

7r 71 
02~b002 = 0 on both 0 = - ~  and 0 = +-~. (3.8) 

Substituting the value of ~b given by (3.5) in these boundary conditions and solving, we 
see that the independent solutions so obtained fall into two classes; namely those for which 
~b is an odd function of 0 and those for which g, is an even function of 0. In the former class, 
which we will refer to as being 'symmetric' flows, we have 

~b = pU sin NO where N = 2, 4, 6 . . .  (3.9a) 

~b = pN sin(N - 2)0 where N = 4, 6, 8 . . .  (3.9b) 

and in the latter class, which we will refer to as 'antisymmetric' flows, 

~b = p N cos NO where N = 3, 5, 7 . . .  (3.10a) 

~b = pN cos (N - 2)0 where N = 3, 5, 7 . . .  (3.10b) 
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Table 1. Values of U1, U2, and P/# in Cartesian coordinates for the 'symmetric' flows (3.9a, 
b) bounded by a free surface at rl = O. 

¢ u~ g2 e /u  

p2 sin 20 2rl -2r2 0 
p4sin40 4rl(r~-3r~) 4r2(-3r~+r~) 0 
p4sin20 2rl(r~+ar~) 2r2(-3r~-r~) 12(r~-r~) 
p6sin60 6rl(r~-- 10r~r~+5r~) 6r2(-5r~+lOr~r~-r~) 0 
p6sin40 4rl(r~-5r~) 4r2(-5r~+r~) 20(r~-6r~r~+r~) 

Table 2. Values of Ut, U2, and P/l z in Cartesian coordinates for the 'antisymmet- 
ric' flows (3.10a, b) bounded by a free surface at rl = O. 

¢ u~ u2 P/~ 

pacos30 -6fir2 3(-r~+r~) 0 
p3COS0 2fir2 --3r~ -- r~ --8r2 
p3cos50 20r,rz(-r~+r~) 5(- r~+6r~r~-r~)  0 
p3cos30 4r,r2(-r~ -3r~) -5r~+6r~r~+3r~ 16r2(-3r~+r~) 

the uniform flow given by ~b = p cos 0 having been omitted (since it is the same problem as 
that of the translating sphere in a quiescent fluid). 

When the solid sphere is placed into each of these flows, it is observed that, by symmetry, 
for the flows (3.9a,b), the force F on the sphere is normal to the surface, whilst the moment 
of force G is zero, and for the flows (3.10a,b) the force F is parallel to the surface (in the 
2-direction) whilst the torque G is also parallel to the surface (in the 3- direction). Thus for 
the 'symmetric' flows (3.9a,b) 

F = (FI,0,  0) G = 0 (3.11) 

and for the 'antisymmetfic' flows (3.10a,b) 

F = (0, F2, 0) G = (0, 0, C3). (3.12) 

The values of the undisturbed velocity U = (0"1, U2, 0) and pressure P in Cartesian coordinates 
(obtained using (3.1) and (3.6)) are listed in Table 1 for the flows (3.9 a,b) [up to N = 6] and 
in Table 2 for the flows (3.10a,b) [ up to N = 5]. 

3.2. SOLID SURFACE 

For a solid surface at rt = 0, the boundary conditions (2.11), when expressed in terms of the 
streamfunction ~b, reduce to 

71" 71" 
~b = 0 on both 0 = - 2  and 0 = + 5 '  (3.13) 

0~b = 0  on b o t h 0 =  7r 7r 00 - -~  and 0 = +-~. (3.14) 
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Table 3. Values of Ul, U2, and P/# in Cartesian coordinates for the 'symmetric' flows (3.15a, b) 
bounded by a free surface at rl = O. 

~/3 UI U2 P / # 

p3(sin 30 + sin O) 4r~ -8fir2 8rt 
p4(Esin40+4sin20) 16r~ -48r~r2 48(r~--r~) 

pS(sin50+sin30) 8r~(r~-3r~) 16rlrE(--2r~+r~) 16rt(r~-3r~) 
p6(4sin60+6sin40) 48r~(r~-5r~) 240r~r2(-r~+r~) 120(r~--6r~r~+r~) 

Substituting the value of ~b given by (3.5) in these boundary conditions and solving, we 
again obtain independent solutions for which ~b is an odd function of 0 giving the 'symmetric' 
flows 

~b = pN (sin NO + s i n ( N -  2)0) where N = 3, 5, 7 . . .  (3.15a) 

~b = p N ( ( N  -- 2) sin NO + N sin(N - 2)0) where N = 4, 6, 8 . . .  (3.15b) 

and independent solutions for which ~b is an even function of 0, giving the 'antisymmetric' 
flows 

~b = pN(cosNO + cos(N - 2)0) w h e r e N  = 2, 4, 6 . . .  (3.16a) 

~b = p N ( N  - 2) cos NO + N cos(N - 2)0) where N - 3, 5, 7 . . . .  (3.16b) 

When the solid sphere is placed into each of these flows, it is again observed that, by 
symmetry, the force F and moment of force G on the sphere are of the forms 

F = (F1,0,0) G = 0 (3.17) 

for the 'symmetric'  flows (3.15a,b), and of the form 

F = (0, F2,0), G = (0,0, G3) (3.18) 

for the 'antisymmetric' flows (3.16a,b). 
The values of the undisturbed velocity U = (Ul, U2, 0) and pressure P for each of the flows 

(3.15a,b) [up to N =  6] are listed in Table 3 and for each of the flows (3.16 a,b) [up to N =  5] 
are listed in Table 4. 

4. Forces acting on sphere placed in the flow (U, P)  

Into each of the undisturbed flows given by (3.9a,b) and (3.10a, b), bounded by an undeformable 
free surface at rl = 0, we assume we place at rest a solid sphere of radius a with centre C 
at position (h, 0, 0).The force F and the moment of force G (about C) acting on the sphere 
are then calculated using the results (2.25) and (2.35) with n replaced by N - 1. In order to 
perform this calculation we use values of FnTik and FuRi ~ which are already known (see, 
for example, Brenner [6]) from the solution of the creeping flow equations (2.13)-(2.15) 
[or (2.27)-(2.29)] with the boundary conditions (2.16)-(2.18) [or (2.30)-(2.32)] obtained by 
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Table 4. Values of U~, U2, and P/# in Cartesian coordinates for the'antisymmetric' 
flows (3.16a, b) bounded by a free surface at rl - 0. 

~, U1 U2 P / # 

p2(cos20 + 1) 0 - 4 r l  0 
p3 (cos 30 + 3 cos 0) 0 -12r~ -24r2 
p'(cos 40 + cos20) -lZr2r2 4rl(-Zr12 + 3r 2 ) -24r,r2 

p5(3 cos so + 5 cos30) -80r~r~ 40r~(-r~ + 3~) 80~( -3~  + ~) 

( 
k 

rl 

= c o n s t a n t  

= c o n s t a n t  

(-¢=o 
5" 

Fig. 4. The spherical bipolar coordinates ( (, r/, ¢) are obtained by rotating the planar bipolar coordinates (~, ~7) 
shown about the rl-axis. 

the boundary conditions (2.16)-(2.18) [or (2.30)-(2.32)] obtained by using spherical bipolar 
coordinates (~, 71, ¢) defined in terms of  the Cartesian coordinates (rl,  r2, r3) by 

~ / ~  = tan ¢, (4.1 a,b,c) 
c sin z/ ?'3 

= c sinh ~ + r2 = cosla ~--- cos r/ rl cosh ~ - cos z]' ' r2 

so that the surfaces of  the sphere and of  the planar boundary rl -- 0 are respectively ~ = a 
and ~ -- 0 [see Fig. 4]. The values of  the constants c and a expressed in terms of  a and h are 
then 

c = a sinh a = ~ - a 2, (4.2a) 

a = c o s h - 1  = l o g  + - 1  . (4.2b) 

By calculating the asymptotic expansions of  FUTi k and FuRia for r --* cx~ (i.e. for 
---+ 0, ~ ~ 0), the values of  (_N)FuTik and (_N)Fumk may be obtained. From these 

the corresponding stress fields (_N)FaTijk and (_N)Famjk are determined. These are then 
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substituted respectively into (2.25) and (2.35) and the integrals evaluated algebraically to 
obtain the force F ,= (F1, 0, 0) [with G -- 0 ] for the 'symmetric' flows (3.9a,b) and the force 
F = (0, F2, 0) and moment of force G -- (0, 0, G3) for the 'antisymmetric' flows (3.10a,b). 

This calculation, although straightforward, is long and tedious even for undisturbed flows 
with streamfunction ~ for which N is small. In fact, to do the calculation by hand for larger 
values of N is completely out of the question. The calculation was therefore performed on a 
computer using the symbolic manipulation language MACSYMA for all the flows (3.9) and 
(3.10) for which N < 10. 

In a similar manner the force F and moment of force G (about C) on a sphere placed at rest 
in each of the flows (3.15a,b) and (3.16a,b) bounded by a solid wall at rl ,- 0 may be calculated 
using (2.39) and (2.40) in which (_n)SUTik, (_n)SURik, (_n)SCrTijk and (_n)S~YRijk are obtained 
from the known values [4,6,8,18] of SUTik and Sumk given in terms of the spherical bipolar 
coordinates (~, r/, ¢). This calculation was again performed for all flows (3.15) and (3.16) with 
N < 10 using MACSYMA. 

In the following sub-sections the results of these calculations are given. The force F and 
moment of force G acting on the sphere in the 'symmetric' flow (3.9a,b) and 'antisymmetric' 
flow (3.10a,b) for an undeformable free surface at rl = 0 are given in sub-sections 4.1 
and 4.2 respectively whilst the equivalent results for the 'symmetric' flow (3.15a,b) and 
'antisymmetric' flow (3.16a,b) bounded by a solid wall at rl = 0 are given in sub-sections 4.3 
and 4.4. 

4. i .  'SYMMETRIC' FLOW BOUNDED BY A FREE SURFACE 

We consider undisturbed 'symmetric' flows (3.9a,b) bounded by an undeformable free surface 
at rl -- 0 with a general (dimensional) strength S so that ¢ is now 

if) = Sp N sin NO (N = 2, 4, 6 . . . )  (4.3a) 

or 

¢ = Sp N sin(N - 2)(9 (N = 4, 6, 8 . . . ) .  (4.3b) 

If F -- (F1,0, 0) is the dimensional force on the sphere placed at rest in such flows, we define 
the dimensionless force F* =, (FI*, 0, 0) as 

F 
F* - 67r#aU S. (4.4) 

Then by making use of the value of FuTil given by Brenner [6], the calculation described 
above using MACSYMA gives the value of FI* for both of the flow types (4.3a) and (4.3b) 
as 

where a is given by (4.2b), and bs and ds are 

s(s + 1) sinh2 a [2(1 + e -(2s+l)'~) + (2s + 1)(e 2'~ - 1) 
b~ = Sv,'~(~s Z i )  [ 2 s ~ l ~  Z (2s + ~) s-~nh2o~ ' (4.6a) 
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Table 5. Values of L, ao, al . . .  in (4.7) for bK, and aKo (see 4.5)) for the flows (4.3a) with N < 10. In the 
second column b and d indicate whether the values are for bK, or aKo. 

N bK ,  L ao al a2 a3 a4 a5 a6 a7 a8 

or dKs 

2 b 8 -1  

d 8 - 1  
4 b 16 - 9  +1 - 7  15 

d 16 -17  -15  - 7  15 
6 b 8 -135 +26 -188 +4 105 

d 8__ -375 -502 -332 -92  1o5 
8 b 3_L -315 +81 -601 +23 945 

d 3_.3_2 -1155 -1903 -1529 -649 
945 

10 b ~ -42525 +13212 -100152 +5252 31185 

d 8 -193725 -364548 -333592 -175068 
31185 

- 22  

-22  

-129 +1 - 5  

-209 -31 - 5  
-29942 +428 -2168 

-67542 -15732 -3288 
+8 -38  

-312 -38  

s(s + 1) sinh2(x [2(~ + e -(2s+1)(~) + (2s + 1)(1 -e-2C~)] 
d, 4  (28 + 3) L  sVnh  j '  (4.6b) 

which are (apart from a factor of a 2) quantities appearing in the value of VuTil given by 
Brenner [6]. The quantities bK8 and aKs appearing in (4.5) are polynomials of degree (N - 
2) in s and are of the form 

bKs = L "[% + als + . . .  + aN_2 sN-2)' (4.7) 
dKs 

where L is a rational number and ao, al . . .  aN-2 are integers whose values depend on N and 
on whether the flow is of the type given by (4.3a) or (4.3b). These values of L, a0, a l . . .  for 
both bK~ and dKs forN < 10 are listed in Table 5 for flows given by (4.3a) and in Table 6 for 
flows given by (4.3b). 

Thus for the flows (4.3a,b) with N < 10 one may, to any desired accuracy, calculate 
numerically the dimensionless force FI* on the sphere as a function of h/a using (4.5). This 
has been done, and in order to illustrate the results so obtained it is convenient to define a new 
dimensionless force F~ and a dimensionless gap distance h* (0 < h* < oc) between sphere 
and plane rl = 0 as 

F1 (4.8) 
f f  l = 67r#aUcl' 

h - a  
h* (4.9) 

O/ 

with Uci = being the ith component of the undisturbed velocity Uc  evaluated at the sphere 
' " - - *  h *  centre C. With these definmons we have F 1 ~ 1 as ~ oc since the effect of the boundary 

at rl -- 0 would then become negligible. It may be readily shown that 

FI* F~ (4.10a) 
T~ = N(1 + h*) N-1 = Ncosh  N-1 a 
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Table 6. Values of L, a0, al . . .  in (4.7) for bK, and eK, (see 4.5)) for the flows (4.3b) with N < 10. In the second 
column b and d indicate whether the values are for bK, or dK,. 

N bK,,  L ao a l  a2 a3 a4 a5 a6 a7 a8 

or a K, 

4 b ~ +3 -17  -1  
d ~ +19 +15 - 1  

6 b z6 +45 -284 +2 - 76  - 2  
315 

d 1 6  +405 +508 +218 +68 - 2  315 
8 b ~ +315 -2151 +115 -1037 - 9  945 

d ~ +3675 +5785 +3827 +1651 +311 945 

10 b 32 +14175 -102942 +9162 -68242 +352 155925 

d 32 +203175 +369258 +300962 +157158 +47352 155925 

-67  - 1 

+61 - 1  

-8158 - 62  -208 - 2  
+12042 +1338 +192 - 2  

6 

5 

¢7 4 

3 

2 

1 

0 

~ N  = lO(rot) 
N = S (rot) 

~ ~  N = 6 (rot) 

• ~-6(irr) '-8 (irr) LlO(irr) 

o . . . .  I:o . . . .  2:0 . . . .  3.0 

h" 

Fig. 5. Force F~ as a function of h* for 'symmetric' flows bounded by a free surface at rl = 0. The values of N 
are indicated with(irr) and (rot) referring to whether the flow is irrotational (given by(4.3a)) or rotational (given 
by (4o3b)). 

for the flows (4.3a), and 

El* (4.lOb) 
F~ = ( N -  2)(1Fl~ h*) u-1 = ( N -  2)cosh g - I  o~ 

for the flows (4.3b), so that ~11 known once FI* has been calculated. 
The results for the dimensionless force T~ acting on the sphere as a function of h* have 

been plotted in Fig. 5 for all the flows (4.3a) and (4.3b) with N < 10. 
Finally, it should be noted from Brenner [6] that for the sphere translating (but not rotating) 

with velocity U" in the 1-direction in a quiescent fluid bounded by the free surface, the 
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dimensionless force T~ on the sphere in the 1-direction (made dimensionless by 67r#aU so 
that F~ --o - 1 as h* --o oo) is 

8=1 

(4.11) 

4.2. 'ANTISYMMETRIC' FLOW BOUNDED BY A FREE SURFACE 

Consider the undisturbed 'antisymmetric' flows (3.10 a,b) hounded by an undeformable free 
surface at rl -- 0 with a general strength S so that ~ is now 

(N = 3, 5, 7 . . . )  (4.12a) ¢ = Sp N COS N 8  

and 

¢ ---- Sp  N cos(N - 2)0 (N = 3, 5, 7 . . . ) .  (4.12b) 

For a sphere placed at rest in such flows (with centre on the rl-axis) the dimensional force F 
-- (0, F2, 0) and moment of force G -- (0, 0, G3) about the sphere centre C may be expressed 
in terms of a dimensionless force F = (0, F~, 0) and moment of force G* ,,. (0, 0, G~) by 

F G 
F* = G* - (4.13) 

67r#aNS ' 87r#a N+I S 

The calculated flows obtained by Goldman et al. [10] for a pair of equal sized spheres 
translating or rotating in a symmetric manner in a quiescent fluid may be used for the present 
problem to obtain Fuvi2 and Rum 3 for a single sphere translating or rotating in a fluid bounded 
by an undeformable free surface, since on the plane of symmetry for the two-sphere problem 
the free surface boundary condition is automatically satisfied. From these we calculate, using 
MACSYMA, in the manner described above, the values of F~ and G~ for both of the flow 
types (4.12a) and (4.12b) as 

o o  

sinhU   {8(ans)ra, + + 1)(bn8)%8 +-g- 
a----0 

+ (dKs)Td8 + s(s - 1)(IKs)Tfs}, (4.14) 

c; 
oo 

v ~  sinhg+l ~"~{s(aKs)Ras + s(s + 1)(bKs)Rbs + (dKs)Rds +-g- o~ 
s=O 

+ s ( s -  1)(fKs)Rfs}, (4.15) 

where a is again given by (4.2b). In (4.14) the values of Tas, Tbs, Tds, and Tfs are quantities 
appearing in the value of FuTi2 determined by Goldman et al. [10] with Tas as being determine 
by the infinite set of equations 

(s (s - 1)(2s - 
(2s ---1) 3)(% _ 1)] Tas_ 1 1)(Ts-1) 



r 
+ [(2s + 1) - 57s 

[(s +2)(2s + 5) + L (2s + 3) 

= v ~ e - ( ' + ½ >  e" 
c o s h ( s  - ½). 

for Tal, Ta2 ... in which 7, is 

1 
7s = cotho~ tanh(s + ~)ol. 

Tb,, Vds and :If, are then given in terms of Tas by 

8 - 1  1) 1, 1 
--[2%]Tas + [2 ( s + 2 \2--8"-~] (%+1)] Tas+l' [ 
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8(2s - i) (s + I)(2s I)] ras 
(-'~'s .~ ~ (7-I + i) + (2s + i ; 3 ) ( %  - I -  

(% + 1) - (8 + 2)(%+1 + 1) / T as+ l 

2 e -~ ] 
- cosh(s + l )a  + cosh(s + 3)c~. 1 

193 

(s ~< 1) (4.16) 

(4.17) 

(s >__ 1), (4.18) 

i [8(8-I) ] 
Td s = 2x/2e-(s+½)asech(s + ~)ol - t(2s ~(% - I) Ta~_l 

+[(8+1)(8+2)] 
(2s + 3) % + 1 Tas+l, (s >_ 0), (4.19/ 

[ ( % -  I)IT [(%--i)lT [(7,+ I)I  
Tfs = [(28 i)_ as-i -- t(28 i)] as-l - _(28+~))J as+l (8 >_ 2). (4.20) 

The values of Ta O, Do O, Tfo and Tfl are not defined by the above Eqs. (4.16)-(4.20) but they 
are not needed anyway since they do not affect the value of F~ given by (4.14). 

Likewise, in (4.15), ga,, Rb,, gd, and nf, are quantities appearing in the value of Eum3 
determined by Goldman et al. [ 10] with Ra, being determined by the infinite set of equations 

[ ( s - 1 ) ( % - 1 ) - ( 8 - 1 ) ( 2 8 - 3 ) ( 2 8  - 1) ( % -  l)]Ras_ 1 

[ S(2S-- 1) (S + 1)(2S + ] 
+ (28+1)- -57 ,  (2s+1)  ( % - 1 + 1 ) +  (28+1) 3)(7,+1--1) Ra, 

+ [(s +2)(2s + 5) ] 
(2s + 3) (% + 1) - (s + 2)(7,+1 + 1) Ras+ 1 

v/2e-(S+~ ) '~ (2s+1)  ( e '~ e -a ) 
- 2 i -  1 + 3 shah a cosh(s + 2 

(2s - l) (28 + 3) l 
(2s + 1)cosh(s - L) a 2  - (28 + 1)cosh(s + 3)o~] , (s >_ 1), (4.21) 

for Ral, Ra2 . . . ; Rb,, Rd, and Rfs are then given in terms of nas by 

Rb s = 4r, 
sinh ol cosh(s + 2 
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+_72 + [2~2s--1~)-(% - 1)] Ras_l--[27s]Ras + [  (2s + 3)(Ts+ l)] Ras+l, 

Rds - -  
2v~ [ s 2 (s + 1) 2 _ts+3_,c,] 

sinhacosh(s + ½)a ~ - - ~  e-(8-½)'~ ~ s 4 - ~  e ' " ] 

rs(s- l )  [(s+l)(s+2)(%+l)] (s>_O), 

and 

9 8  = 47"8 
sinh a cosh(s + ! )a  2 

where T8 is defined as 

1 [e-(8-½ )'~ 
L 

(s _> 1), 

(4.22) 

(4.23) 

[ (%-1) ]  [(%+1)] , ( ,>2), ~-1(2s_l)jRas-1--L-~-~JRa,+l -- (4.24) 

e-(S+}),~] 
~ s ~  J" (4.25) 

Again Rao, Rbo, Rfo, and Rfl are not defined and are not needed to determine G~ from 
(4.15). 

The quantities aKs, bKs, dKs, and IK8 appearing in the results (4.14) [for the dimension- 
less force F2*] and (4.15) [for the dimensionless moment of force G~] are all polynomials of 
degree (N - 1) in s and are of the form 

- a K  s = L (  a 0 -Jr- a18 Jr- . . .  -~ g N _ 1 8 N - 1 ) ,  (4.26) 

where the value of L depends on the value of N and on whether the undisturbed flow is of 
type (4.12a) or of type (4.12b). The values of a0, a l , . . ,  are however found to depend only 
on N [being the same for flow (4.12b) as for flow (4.12a)]. These values, for N < 10, have 
been listed in Table 7. Using these values, the dimensionless force F~ and moment of force 
G~ on the sphere were calculated numerically as a function of h/a using (4.14) and (4.15). To 
illustrate the results so obtained, we define a new dimensionless force F 2 in a manner similar 
to (4.8) as 

Fz (4.27) 
"-ff~ = 67r #aUcz ' 

so that F~ ---, 1 as h* ~ c~. F~ is then related to F2* for both flow types (4.12a) and (4.12b) 
by 

F~ (4.28) 
F~ = N cosh g-1 a" 

Also a new dlmensmnless moment of force G 3 (about 6") is defined as 

G3 (4.29) 
-G3 = 47r#a3wc3 

for flow type (4.12b) where wci is the ith component of we, the vorticity V× U of the 
undisturbed flow evaluated at the sphere centre C. However, (4.29) cannot be used to define 
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Table 7. Values of L, ao, a l . . .  in (4.26) for ,~ K,,b K ,  ,d K ,  and / K ,  ((see 4.14) and (4.15 ) for the flows (4.12a,b)) 
with N < I0. In the second column a, b, d, andfindicate whether the values for , K , , b  Ko, aKo o r / K o .  Li , r  and 
L,ot are  respectively the values of L for the irrotational flow (4.12a) and the rotational flow (4.12b) 

N a, b L ~ .  L.ot  ao al a2 a3 a4 a5 a6 a7 as 

d , f  

3 a 4o 248 - 1  - 3  - 2  
7 105 

b 2A7 +]~g - 1  - 1  - 1  
d 30 78 T + ~  - 1  - 2  - 2  
f 10 26 5- +~3 2 3 1 

128 416 - 3  - 1 0  - 1 0  - 5  - 2  5 a 3"5" -- 49"-5 
b 70 14 +4-~ - 9  - 1 4  - 1 6  - 4  - 2  
d so 8o 3-~ q-W - 3  - 8  - 1 0  - 4  - 2  
f 3"3 32 "l- ~'~ 32 6 13 13 8 2 

88 232 - 4 5  -161  - 1 9 6  - 1 4 0  - 7 0  - 1 4  - 4  7 a 22-3 4o95 
b 13--828 +2-~2° - 4 5  - 8 7  - 109 - 4 5  - 2 5  - 3  - 1 
d 15_5 + 686 - 4 5  - 1 3 8  - 1 9 6  - 1 2 0  - 7 0  - 1 2  - 4  675 12285 
f ~ +8-~9 18 47 61 47 19 5 1 

,us 7424 -315  -1188  -1636  -1386  - 7 9 8  - 2 5 2  - 8 4  - 9  - 2  9 a 598--"5 915705 
b 234 + 1274 -1575  -3492  -4688  -2492  -1498 - 3 0 8  - 1 1 2  - 8  - 2  29925 4578525 
d 25___L .~ 7452 - 3 1 5  -1056  -1636  -1232  - 7 9 8  - 2 2 4  - 8 4  - 8  - 2  5985 915705 
f 784 .+ 23184 450 1323 1963 1713 873 327 87 12 2 29925 4578525 

G3 for flow type (4.12a) which is an irrotational flow giving Iwcl - 0. Instead for flow type 
(4.12a), we define 9 3 as 

- - ,  G3 
G3 = 47r#a 3(UC2/h)" (4.30) 

Thus 9 3 - ,  0 for flow type (4.12a) and G~ --* 1 for flow type (4.12b) as h* ~ c~. G3 is 
related to G~ by 

2 G~ (4.31) 
G3 = N cosh N-2 a 

for flow type (4.12a), and by 

- - ,  1 G~ (4.32) 
G3 = 2(N --  1) c o s h  u - 2  o~ 

for flow type (4112b). 
The results for the dimensionless force F2 and moment of force 9 3 acting on the sphere 

as a function of h* have been plotted respectively in Figs. 6a and 6b for all flows (4.12a,b) 
with N < 10. 

Finally, it is seen directly from Goldman et al. [10] that for the sphere translating (but not 
rotating) with velocity 0" in the 2-direction in a quiescent fluid bounded by a free surface, the 
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5 -  

N = 9 (rot) 
N = 7 (rot) 
N = 5 (rot) 

N = 3  7 9 (irr) 

' ' ' 11o . . . .  21o  . . . .  3 0  
h* 

1.1 

0.9 

0.7 

0.5 

0.3 

0.1 

-0.1 

-0.3 

- 0 . 5  

-0.7 

~ rot) 
rot) 

~ "  N = 7 (rot) 
" N = 9 (rot) 

. f 

/ ¢ ~ - " -  N = 7 (in') 

. . . . . . . . .  210 . . . .  1.0 3.0 
h* 

Fig. 6. Force F2 shown in (a) and moment of force G~ shown in (b) as a function of h* for 'antisymmetric' 
flows bounded by a free surface at rl = 0. The values of N are indicated with (irr) and (rot) referring to whether 
the flow is irrotational (given by (4.12a)) or rotational (given by (4.12b)). Note that for the flows (4.12a), G3 is 
non-dimensionalised as in (4.30) whereas for flows (4.12b), it is non-dimensionalised as in (4.29). 

dimensionless force ~22 on the sphere in the 2-direction (made dimensionless by 61rpa20 so 
that ff~ ~ - 1  as R* ~ oo) is 

oo  

F 2 -  V~s inha}- -~  { s ( s +  1)Tbs +Tds} (4.33) 
6 ' 

s = 0  

whilst the dimensionless moment of  force ~33 on the sphere about its center in the 3-direction 

(made dimensionless by 87r#a2~ r so that ~33 --~ 0 as h* --> oo) is 

(x) 

s ~ 0  
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+[2- e-(2s+l)~][s(s + 1)(cotha)Tbs - (2s  + 1 -cotha)Tds]}. (4.34) 

Likewise from Goldman et al. [10], for the sphere rotating about its centre (but not 
translating) with angular velocity ~2 in the 3-direction in a quiescent fluid bounded by a free 
surface, the dimensionless force T~ on the sphere in the 2-direction (made dimensionless by 
67r#a2~2 so that T 2 --o 0 as h* ~ ~ )  is 

oo 

F ;  = V~ sinh2 a ~ {s(s + 1)Rb~ + Rd~} (4.35) 
6 

s = 0  

whilst the dimensionless moment of force G~ on the sphere about its centre in the 3-direction 
(made dimensionless by 87r#a3f2 so that G~ ~ - 1  as h* --, oc) is 

1 sinh3a~_,{2s(s+l)[2+e_(e~+l),~)]Ra ~ 
G; = - 3  + 12-'--~s=O 

-+" [2 -- E (-2s+l)~] [8(8 +l ) ( co tha )Rbs  - (2 s  + 1  - c o t h a ) R d s ] } .  

(4.36) 

4.3. 'SYMMETRIC' FLOW BOUNDED BY A SOLID SURFACE 

The undisturbed 'symmetric' flows (3.15 a,b) bounded by a solid surface at rl -- 0 with a 
general (dimensional) strength S may be written as 

¢ = SpN(sin NO + sin(N - 2)0) where N = 3, 5, 7 . . .  (4.37a) 

and 

¢ = Sp N ((N - 2) sin NO + N sin(N - 2)0) where N = 4, 6, 8 . . .  (4.37b) 

If F* = (FI*, 0, 0) is the dimensional force on the sphere placed at rest (with centre at (h, 0, 
0)), we define, as in §4.1, the dimensionless force F~ -- (F~, 0, 0) as 

F 
F~ - 67rlzaU S. (4.38) 

Then by making use of the value of SUTil given by Brenner [6], the value of FI* given by 
MACSYMA is obtained as 

x/2 ~ 1 K FI* = +--~- sinh N-2 a Z ( s  + -~)(c s)cs (4.39a) 
s = l  

for the flows (4.37a) for which N is odd, and as 
c o  

~ ( s  2 ~)(bKs)bs (4.39b) FI* = +---~- sinh N-2 a 
s = l  

for the flows (4.37b) for which N is even. In (4.39a,b), cs and bs are (apart from a dimensional 
factor and sign) as given by Brenner [6], i.e. 

s(s + 1)(2s + 1) sinh 4 a 

cs = - V/2 [4sinh 2 ((s + 2 
(4.40a) 

1)o~ - (2s + 1) 2 sinh 2 a ] '  
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Table 8. Values of L, a0, al  . . .  in (4.41) for oK,  and bK,  (see (4.39)) for the flows (4.37a, b) with N < 10. In the 
second column c and b indicate whether the values are for cKo or bKo. 

N eKs  L ao al a2 a3 a4 a5 a6 

or bKs 

3 c _64 1 
3 

4 b 512 1 
15 
128 3 1 1 5 c 15 

6 b 512 5 1 1 
35 
64 45 26 28 7 c -1o-"3 

8 b 1o24 105 38 40 
945 
256 315 243 277 9 c 2835 

10 b 1024 945 471 517 
6237 

4 2 

4 2 

69 37 3 1 

93 49 3 1 

bs= s ( s + l ) s i n h 2 a  2sinh(2s+ l ) a + ( 2 s +  l)sinh2a - 1 ]  . 
x/2(2s - 1) 4sinh 2 (s + 2 ! ) a -  (28 + 1) 2 sinh2 a J (4.40b) 

The quantities eKs and bKs appearing in (4.39a,b) are polynomials in s of degree (N - 2) 
and (N - 3) respectively, and are of the forms 

eKs = L (ao + als + + aN-2 8N-2) " * .  

bKs = L (ao + als + + aN_3S N-3) ' ' '  (4.41) 

with the values of L, a0, a t , . . ,  for cKs and for bKs for all cases N < 10 being listed in Table 
8. 

Thus for the flows (4.37a,b) with N < 10, one may obtain the dimensionless force FI* on 
the sphere as a function of h/a by making use of the results (4.39), (4.40), (4.41) and Table 8. 
As in §4.1, it is more convenient to use a new dimensionless force ~ defined as 

F1 (4.42) 
-ff~ -- 67r #aUc1 

and gap distance h* defined as in (4.9). The definition (4.42) for F1 with U c  being the 
undisturbed velocity evaluated at the sphere centre C means that T~ ~ 1 as h* ~ oo. It may 
readily be shown that 

FI* 
F1 = 2 ( N -  1)(1 + h*) N-1 

for the flow (4.32a) and that 

El* 
-ff*l = 2 N ( N  - 2)(1 + h*) g-1 = 

F,* 
2(N - 1) cosh N-1 o~' 

2 (N - 2) cosh N-1 a 

(N = 3, 5, 7 . . . ) ,  (4.43a) 

(N = 4, 6, 8 . . . )  (4.43b) 

for the flow (4.32b). 
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at h* = 0, order of curves: N = 10  =1o 

2- ~ " = ~  

I I 

' 1:o . . . .  2:0 
h* 

3.0 

Fig. 7. -ff~ as a function of h* for 'symmetric' flows bounded by a solid surface at rl = 0. The flows are given by 
(4.37a) when N is odd and by (4.37b) when N is even. 

The results for the dimensionless force F~ acting on the sphere as a function of h* have 
been plotted in Fig. 7 for all the flows (4.37a,b) with N <10. 

Finally, it should be noted from Brenner [6] that for the sphere translating (without rotation) 
with unit velocity ~r in the 1-direction in a quiescent fluid bounded by a solid surface, the 
dimensionless force F1 on the sphere in the 1- direction (made dimensionless by 6rr#a(5 so 
that ff~ ---* - 1  as h* ~ oe)is  

x/~ ~ 4bs 
F~ - 3 si~o~ ( 2 s ~ 3 ) "  

s----1 

(4.44) 

4.4. 'ANTISYMMETRIC' FLOW BOUNDED BY A SOLID SURFACE 

The undisturbed 'antisymmetric' flows (3.16a,b) bounded by a solid surface at r l = 0 with a 
general (dimensional) strength S may be written as 

¢ = S p  N (COS NO n t- c o s ( N  - 2)0)  where N = 2, 4, 6 . . .  (4.45a) 

~3 = S p  N ( ( N  - 2) cos NO + N cos(N - 2)0) where N = 3, 5, 7 . . .  (4.45b) 

The dimensional force F = (0, F2, 0) and moment of force G -- (0, 0, G3) about C acting on a 
sphere (with centre on the rl - axis) may be expressed as in §4.2 in terms of a dimensionless 
force F* = (0, F~, 0) and moment of force G* = (0, 0, G~) by 

F G 
F* = G* = 67rlzaNS ' 87r#a N+I S" (4.46) 

The values of STZTi 2 and Suni3 for a sphere translating or rotating in a quiescent fluid 
bounded by a solid wall and obtained by O'Neill [4,18] and by Dean & O'Neill [8] may, by 
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using MACSYMA (and the results of §2), be used to obtain the values of F~ and G~ for flows 
of the type (4.45a) for N even as 

oo 

V~ c ~ ( 2 s  + + + F ~ =  +-ff-sinh N 1){s(s 1)(~Ks)Tcs (eKs)Te, 
s=O 

+ s ( s -  1)(gKs)Tgs}, (4.47a) 

G; = +---~-x/2 sinhN+' c~ Z ( Z s  + 1){8(s + 1)(cKs)RCs + (eK,)Res + s(s - 1)(gKe)Rg,} 
s=0 

(4.48a) 

and for flows of the type (4.45b) for N odd as 

F2* = +-~-- sinh/v o~ ~_~{s(s + 1)(2s + 1)(aKs)Tas + s(s + 1)(bKs)rbs + (dKs)Tds 
s=O 

+s(s - 1)(s + 1)(s + 2)(IK,)TI,}, (4.47b) 

V/• o,o 

G; = +--~- sinh N+I c~ ~_,{s(s + 1)(2s + 1)(aKs)Ras + s(s + 1)(bKs)~s + (dKs)Rds 
s=0 

+s(s - 1)(s + 1)(s + 2)(fKs)Rfs}. (4.48b) 

The values of cKs, eKs and gKs in (4.47a) and (4.48a) are polynomials in s like those shown 
in (4.26) but of degrees N - 2 with L, ao, al, . . ,  aN-2 having the values listed in Table 9. 
Also in (4.47b) and (4.48b), ,~Ks, bK,, aK,, and IKs are polynomials in s like those shown in 
(4.26) with aKs and IKs of degree N - 3 and bKs and dKs of degree N - 1, the coefficients 
L, ao, al, . . ,  being listed inTable 10. 

The values of TCs, Te,, and Fgs appearing in (4.47a) and Tas , Tb, mds and Tf, appearing 
in (4.47b) are quantities appearing in the value of SUTi2 determined by O'Neill [4] (see also 
O'Neill [ 18]) from which it is observed that Tas is determined by the infinite set of equations 

[ ( 2 s - 1 ) k s _ l - ( 2 s - 3 ) k s ]  (s--1)Tas_l 
( 2 s -  1) 

- [(2s + 5 ) k s  - (2s + 3)ks+l] [ (2s + 1) 

sra, 
(2s+  1) 

(s + 2)Tas+l 
(2s + 3) 

= V~ [2 coth ( s + l ) o~ - coth ( s - ~ ) oL - coth ( s + ~ ) o~] , 

for  T a l ,  Tg2,  Tg3 . . . i n  w h i c h  

ks= ( s + l )  coth(s+l)c~-cothc~,  (s>_O). 

Tbs ' Tc, ' rds" Tes ' Tj,, and Tgs, are then given in terms of Tas, by 

Tbs = (S -- 1)Tas_l -- (2S + 1)Tas q- (s + 2)Tas+l, (s > 1), 

(s > 1) (4.49) 

(4.50) 

(4.51) 
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Table 9. Values of the coefficients L, a0, a l . . .  (see (4.26)) for ~ K , , ,  K , ,  and g K° appearing in (4.47a) and (4.48a) 
for the flow (4.45a,b) for N even (N < 10.) In the second column c, e, and g indicate whether the values are for 
o K , , ,  K ,  or oK° .  

N c~ e~ g L ao al a2 a3 a4 a5 a6 a7 a8 

4 2 c - g  1 
24 

e - - T  1 

0 0 
1276 3 1 1 4 e 945 

e _ 51...22 3 2 2 
189 

.1..512 g - g i 3  2 3 1 
7o04 45 26 28 4 2 6 c 45045 

e _536 15 16 18 4 2 
715 

4-1072 g --3-"~ 18 31 19 8 2 
7636 315 243 277 69 37 3 1 8 c 240975 

192 5985 8094 9880 3648 2014 228 76 e 80325 

g +11~26 90 171 137 79 27 5 1 

56956 14175 13212 15768 5252 2978 428 152 8 2 I0 c 62214075 

1384 2835 4464 5796 2768 1646 320 116 8 2 e 226233 

5536 3150 6453 6073 4083 1683 477 117 12 2 
g 1382535 

Table 10. Values of the coefficients L, ao, a x . . .  (see (4.26)) for ,, K, ,b  K , ,  dK°  and ~ °  appearing in (4.47 b) and 
(4.48 b) for the flow (4.45a,b) for N odd (N  < 10.) In the second column a, b, d andfindicate whether the values 
are for aKs,b  K , , d  K , ,  o r / K , .  

N a ,b ,d ,  o r f  L ao al a2 a3 a4 as a6 a7 as 

48 3 a q -~  1 
b _ 12._~8 1 1 1 

35 
d - 38---54 1 2 2 

35 
/ 1 

736 3 1 1 
5 a 99 

b 224 9 14 16 4 2 
99 

d n2o 3 8 10 4 2 
99 
448 f + ~  3 2 2 
912 45 26 28 4 2 7 a 585 

b _ 12...!8 45 97 109 45 25 3 1 117 
d _ 89__6 45 138 196 120 70 12 4 

585 
-4- 384 f --]Tq 9 10 11 2 1 

15296 3 15 243 277 69 37 3 1 9 a 33915 
b 832 1575 3492 4688 2492 1498 308 112 8 2 14535 
d _ 83__3.2 315 1056 1636 1232 798 224 84 8 2 2261 

4- 3328 225 324 383 120 65 6 2 jr -14-~ 
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TCs = -2ks [(8 - 1)Tas_l (s + 2)Tas+l" 
'~S ='I --Tas + ' (2S + 3) ' 

1 1 
rds = - 7 ( 8  - 1 ) : a s - ~  + ~(8 + 1)(8 + 2)T~s+~, 

2v'~e-(S+½ )a [(s - 1)sTas_l 
Tes = sinh(s + 1)a + ks ~ 7 :  ~ - 

1 T  Tfs = ~( as-1 - -  Tas+l), (8 >_ 2), 

Tas-1 Tas+l ] (8 >_ 2). 
Tgs = - k s  ( 2 s -  1) (~¥i)J' 

(s > 1), (4.52) 

(s > 0), 

(s + 1)(s + 2)ras+x] 
(2s 7 ~)) J '  

(4.53) 

(s _> 0), (4.54) 

(4.55) 

(4.56) 

The values of Tao, Tbo, TCO, Tfo, Tfl, TgO, and Tgl are not defined by these equations, but they 
are not needed anyway since they do not affect the values of F~ given by (4.47a,b). 

Likewise, in (4.48a,b), the quantities ~s,  ~s,  acs, ~s ,  ~s,  Rf ~ and ags, are those appearing 
in the value of SUai3 determined by Dean & O'Neill [8], with aa~ being determined by the 
infinite set of equations 

] [(28 - 1)k,_l - (28 - 3)k,] [ ( 2 8 - 1 )  ( 2 8 + 1 )  
.1 

[ ( s +  1)aas (s -t- 2)aas+l] 
- [(2s +5)ks - (2s + 3)ks+,] [ (2s + 1) (2s + 3) J 

. )  1 
= (2s + 1)sinhc~ (2s + 1 ~ + (2s + 3------~ cosech(s + ~)a 

1 
-(2s  - 1)cosech(s - ~)a - (2s + 3)cosech(s + )a , (s > 1) (4.57) 

for hal, ~2, Ra3 . . . .  Then Rb,, ads and nfs are given in terms of aas by the same equations as 
for Tbs, Tds, and Tfs [i.e. by Eqs. (4.51), (4.53) and (4.55) with ra~, Tb,, rds and :If, replaced 
by ~s ,  ~os, ad~ and afs ]. The remaining quantities ~s,  aes and ags are then 

1 
acs = 4Ascosech a cosech (s + ~)a 

-2ks [ ( 8 -  1)Ras_l (s-t-_2)Ras+l] 
~ ; - -  ~ aas + (2s+3)  ] '  (s___ 1), (4.58) [ 

4 8  

+ks 

1 
[x/2(2s + 1)e-(S+½ )a - AsCOsecha] cosech (s + ~)a 

(s - 1)s~s-I (s + 1)(s + 2)Ras+l 
- (s _> o), 

(28 - 1) (28 + 3) ' 

Ras_ 1 Ras+ 1 ] 
( 2 s -  1) (2s +3)  ' 

1 
ags = -4,~scosechacosech (s + ~)o~ - ks 

(4.59) 

(s >_ 2), (4.60) 



where 

Motion of  a solid sphere in a general flow 203 

1 [e-( '-½ )'~ e-('+~ )'~" 
As - x/2 [ 0s--T)) (2s + 3) ' (s _> 0). (4.61) 

Using the results (4.49)-(4.61) and the Tables 9 and 10, the dimensionless force F~ and 
moment of force G~ on the sphere were calculated numerically as a function of h/a from 
(4.47a) and (4.48a) for flows of type (4.45a) for N even and from (4.47b) and (4.48b) for 
flows of type (4.45b) for N odd. Again, to illustrate the results, it is more convenient to define 
a new dimensionless force ~ as 

F2 (4.62) 
"-ff~ - 6~r #aUc2 ' 

so that T 2 ---* 1 as h* ---* cx~, and a new dimensionless moment of force 

--,  G3 (4.63) 
G3 -- 47r#a3wc 3 

so that G~ ~ 1 as h* ~ oo. ~ and G~ are then respectively related to F~ and G~ (given by 
(4.47) and (4.48)) by 

F~ (4.64) 
T~ = 2Ncosh N-1 a 

and 

9;  = a;  
2(N - 1) cosh  N - 2  o~ 

for flows of type (4.39a) for N even, and by 

2 N ( N  - 1) coshN-1 ce 

and 

(4.65) 

(4.66) 

G~ (4.67) 
-G3 = 2 N ( N  -- l ) cosh N-20~ 

for flows of type (4.39b) for N odd. 
The results for the dimensionless force F~ and moment of force G~ acting on the sphere 

as a function of h* have been plotted respectively in Figs. 8a and 8b for all flows (4.45a,b) 
with N _< 10. 

Finally, it is seen directly from O'Neill [4] that for the sphere translating (but not rotat- 
ing) with velocity U in the 2-direction in a quiescent fluid bounded by a solid surface, the 
dimensionless force F2 on the sphere in the 2-direction (made dimensionless by 67r#aU so 
that T~ ~ -1  as h* ~ co) is 

OO 

F 2  -- V/'2 sinh2 a Z { s ( s  + 1)Tcs +Tes}  , (4.68) 
6 s--0 
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~ N  = 10 

N=gN= 8 

N=7 N=5 

\ N = 4  

1.0 2.0 3.0 
h* 
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N = 4  
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h* 

Fig. 8. Force F2 shown in (a) and moment of force G3 shown in (b) as a function of h* for 'antisymmetric' flows 
bounded by a solid surface of rt = 0. The flows are given by (4.45a) for N even and by (4.45b) for N odd. Note: In 
Figure 8a, values for N= 6 are greater than those for N= 3 for h* > 0.5. 

whilst the dimensionless moment of force G~ on the sphere about its centre in the 3-direction 
(made dimensionless by 87r#a2U so that G-~ ~ 0 as h,  ~ ~ )  is 

sinh 2 a oo 
12x/2 ~{[2+e(2S+])a] [s(s+l)(2(Tas)+cotha(TCs))--(2s+l--cotha)res] 

s=0 

+ [ 2 - e  -(2s+1)~] [s(s+l)cotha(rbs)-(2s+l-cotha)Tds]}. (4.69) 

Also, from Dean & O'Neill [8], we see that for the sphere rotating about its centre (but 
not translating) with angular velocity [2 in the 3-direction, the dimensionless force ~22 on the 
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sphere in the 2-direction (made dimensionless by 67r#a2~ so that T~ ~ 0 as h* ~ c~) is 

F~ - x/'2 sinh2 a ~-~{s(s + 1)Rcs -4- %~}, 
6 

s : 0  

(4.70) 

whilst the dimensionless moment of force G3 on the sphere about its centre in the 3-direction 
(made dimensionless by 87r#a3{2 so that G3 ~ -1  as h* ~ ee) is 

v; -  3 +1  sinh3 a12___~ ~ [2"be-(2s+l)a] [s(s+l)(2(Ras)+cotha(Rcs))-- (2s+l--cothol)Res] 
s : 0  

+ [ 2 - e  -(2s+l)~] [(s+l)(cotha)Rbs-(2s+l-cotha)Rds]. (4.71) 

5. Exact motion of a solid sphere 

We consider now the solid sphere freely moving with zero external force and moment of 
force (about its centre) acting on it in a fluid occupying the region rl > 0 and bounded by a 
undeformable free surface at rl = 0. It is assumed that the fluid undergoes a two dimensional 
undisturbed flow U which is a linear combination of the flows (4.3a,b) and (4.12a,b) considered 
in sections 4.1 and 4.2 with N < 10. Its streamfunction ¢ is thus of the form 

10 10 9 

= ~ ANp NsinNO + ~ BNp Nsin(N-  2)0+  ~ CNp NcosNO 
N=2 N=4 N-----3 
Neven N even N odd 

9 

+ ~ DNpNcos(N--2)O, (5.1) 
N=3 
N odd 

where ANt BN, CN and DN are constants. In terms of the Cartesian coordinates rl, r2 this 
streamfunction may be written as the double sum 

: Z Z tZmn- rmr 2 ( 5 . 2 )  
rr~ n 

(,~+n _< 10) 

in which, of course, the amn are not independent. 
If at any instant of time to the sphere centre is at position (r~', r~) we define a new set of 

c o o r d i n a t e s  ~1,  r2 with origin at O* as shown in Fig. 9 so that 

~1 = r l ,  P 2 = r 2 - r  2. (5.3) 

Substituting this in (5.2) we see that in terms rl ,  r2 

¢ = ~ Z bmnrr~r~ • (5.4) 
r r~  

(m+n <_ 10) 

Since this flow must satisfy the creeping flow equations with the free surface boundary 
conditions on rl -~ 0, this value of ¢ must be a linear combination of flows (4.3a,b) and 
(4.12a,b) with origin at O* [i.e. with p, 0 replaced by ~, 0, the polar coordinates with origin 
at O* (see Fig. 9)]. Since the problem of the calculation of the force and moment of force on 
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O * ' _ / _ _ _  , 

r2 
Fig. 9. Definition of N, ~ coordinates. 

r2 

the sphere at rest in this flow is linear, the results of sections 4.1 and 4.2 with h = r~ may be 
used to calculate the force F = (El, F2, 0) and moment of force G = (0, 0, G3) on the sphere 
at rest in the flow. Then by further use of linearity (see for example Happel & Brenner [3] 
§8.5), we are assured that at its position at time to, the sphere, when freely allowed to move, 
has a velocity V = (V1, V2, 0) and angular velocity O = (0, 0, f~3) determined by the total 
hydrodynamic force and moment of force (about its centre) being zero, i.e. by 

F1 + oq V1 = 0, (5.5a) 

/72 -[-/~22V2 -q-/~23~3 = 0, (5.5b) 

G3 "a t-/~32T¢2 -a t-/~33~3 = 0, (5.5c) 

where the resistance coefficients al,/322,/523 = fl32 and 1333 are calculated using (4.11 ) and 
(4.33)-(4.36). The velocity components of the sphere are thus obtained IV1] from (5.5a) and 
V2 from (5.5b) and (5.5c)] for the known sphere position (r~, r~) at the time to. From this, 
one may calculate the position of the sphere at a slightly later time to + At. By repeating this 
procedure one may calculate numerically the orbit of the sphere centre for a freely moving 
sphere in the given flow (5.1). 

In a similar manner, one may calculate also the orbit of a sphere freely moving in a given 
undisturbed two dimensional flow in the region rl > 0 bounded by a solid wall at rl  = 0. 
In such a case the undisturbed flow would have a streamfunction which would be a linear 
combination of those given by (4.37 a,b) and (4.45 a,b), and the calculation would require the 
use of the results of the sections 4.3 and 4.4. 

5.1. AN EXAMPLE 

As an example of the calculation just described of the motion of a solid sphere, we consider 
such a sphere freely moving (with zero force and moment of force about its centre) in a fluid 
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Fig. 10. Streamlines of vortex flow with undeformable free surface at r~ = 0. For streamfunction (5.7) the flow is 
anticlockwise in the right hand vortex (in v2 > 0), whilst for the streamfunction (6.2) it is clockwise. 

occupying the region rl > 0 which is undergoing a prescribed two dimensional undisturbed 
velocity field U and is bounded by an undeformable free surface at rl = 0. For this prescribed 
undisturbed flow we choose one which is a particular linear combination of a flow of type 
(4.3a) with N = 2 and a flow of type (4.3b) with N = 4, namely we take U to be a flow with 
streamfunction ~ (7"1, ?'2) given by 

~b = ~p2(p2 _ 1)sin2/9 (5.6) 

in terms of plane polar coordinates (p,/9) with an origin O on the boundary rl = 0 (see Fig. 2). 
This expression for ~b can be considered as being dimensionless with ~b and p having been 
made non-dimensional by a characteristic velocity U* and length L*. In terms of Cartesian 
coordinates r l ,  r2 (with origin at O) the stream function ~b is 

¢ = 3 + - (5.7) 

giving the undisturbed velocity U = (U1, U2) as 

v ,  = + - ( 5 .8 )  

U2 = _ , . 3  _ 3r  '2 + r2. 

This flow, shown in Fig. 10, is symmetric about r2 = 0 and consists of a pair of counter-rotating 
vortices which are bounded by the boundary, the symmetry axis r2 -' 0 and the semicircle p = 
1 of unit radius (or of dimensional radius L*). The centres of each of the vortices where U -  0 

1 1 are at (~, + ~ ) .  

In the manner previously described (see §5), the orbits of the centre of a freely moving 
solid sphere in this flow have been calculated numerically for various values of alL*, the 
ratio of sphere radius to vortex size. These results (for alL* = 0.2, 0.25, 0.3 and 0.35) are 
shown in Fig. l l a - l l d .  It is observed that for small alL* the sphere centre, whilst almost 
following the undisturbed flow, slowly spirals into a point very close to the vortex centre (at 
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position ( 1 , +  21) in dimensionless variables). As a/L* is increased, the spiral motion is more 

rapid (with the sphere centre moving inwards a greater distance for each revolution around 
the vortex) and spirals into a point which moves away from the vortex centre somewhat. 
However, if a/L* is increased beyond a value of about 0.4, there is no spiral motion with the 
sphere centre moving on an open orbit. In fact the sphere is then so large compared with the 
vortex that in its general behaviour it no longer recognizes the existence of the vortex. 

6.  D i s c u s s i o n  o f  results 

In §§2 - 4 it was shown how one may calculate at zero Reynolds number the force and 
moment of force on a solid sphere placed at rest in a flowing viscous fluid (with velocity 
U and streamfunction ¢)  occupying a semi-infinite region bounded at rl = 0 by either an 
undeformable free surface (with undisturbed flow which is a linear combination of (4.3a), 
(4.3b), (4.12a) and (4.12b) with N _< 10) or a solid surface (with undisturbed flow which is a 
linear combination of (4.37a), (4.37b), (4.45a) and (4.45b) with N < 10). 

These results were then used in §5 to obtain the orbit of a freely moving sphere in a fluid 
bounded by an undeformable free surface at rl - -  0 in which the undisturbed velocity field U 
is chosen to be that due to the (dimensionless) streamfunction 

¢ = rlr  2 + r~r2 - rlr2. (6.1) 

This was done for several values of a/L*, the ratio of the sphere radius a to vortex size L*. 
It was observed that whereas the undisturbed flow has a single bounded anticlockwise vortex 
(in the region rl > 0) in which all streamlines are closed (see Fig. 10), the motion of the 
sphere centre is such that after entering the vortex it spirals around the vortex, moving across 
streamlines until it ends up at a point Q close to (but not exactly at) the vortex centre P where 
the undisturbed flow velocity is zero (see Figs. 11 a-1 ld). This migration of the sphere across 
streamlines is very slow when a/L* is small but the process speeds up as a/L* is increased. 
No spiral motion occurs with a/L* larger than about 0.4. 

Since the problem of finding the sphere velocity is linear, it follows that if the undisturbed 
flow velocity U is everywhere reversed so that it represents a bounded clockwise vortex (in 
the region r2 > 0) with 

¢ = - r l r  3 - r~r2 + rlr2 (6.2) 

then the sphere motion is exactly reversed and hence moves along the paths shown in Figs. 11 a- 
1 ld  but in the reverse direction. Under such a situation a sphere placed in the vortex will spiral 
around the vortex, moving outwards away from the vortex centre until it eventually leaves the 
vortex by moving in the r2 - direction whilst almost being in contact with the free surface rl 
----0. 

If instead of a single spherical particle in the undisturbed flow, one has a dilute suspension 
of such spheres (with a/L* small but non-zero) with a concentration so low that hydrody- 
namic sphere-sphere interactions may be ignored, then for the flow (6.1) the particles would 
concentrate in the vortex, with the concentrate becoming larger and larger at the point Q as 
time proceeds. In fact at steady state the concentration at Q would be infinite. In the real 
situation however, sphere-sphere interactions must become important in the neighbourhood 
of Q at some stage. For the reverse flow (6.2), particles initially in the vortex would slowly 
spiral out of the vortex, leaving a region (which would be approximately the vortex region 
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Fig. lla-b. Path of sphere centre in the vortex flow with the free surface present at rl  = 0. The values ofa/L* are 
respectively 0.2, 0.25, 0.3 and 0.35 in the figures 1 la, b, c and d. For the undisturbed flow (5.7), the sphere moves 
into the vortex and spirals inwards in an anticlockwise manner. For the undisturbed flow (6.2), this sphere motion 
is reversed. 
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itself for small a/L*) which would become devoid of spheres, so that for all future times the 
concentration would be zero there. 

It should be noted that in a dilute suspension of spheres (in which sphere-sphere interactions 
are neglected) if the sphere velocity is V at any position in the undisturbed flow U then the 
sphere concentration c satisfies the steady state the continuity equation 

V.V(log c) = - V . V .  (6.3) 

In the limit of zero particle size (i.e. as alL* --* 0) the particle velocity V will approach 
U, the undisturbed fluid velocity, and since V. U =- 0 it follows that the particle concentration 
c given at steady state by (6.3) will now satisfy 

U .Vc  = 0, (6.4) 

so that there is a steady state solution in which c is constant everywhere, there being no 
tendency for the particles to concentrate in any particular region (or to leave any particular 
region) of the flow. 

For non-zero alL*, if one has an undisturbed fluid flow U in an unbounded region (with no 
boundaries present) then the velocity V of the centre of a freely moving sphere is determined 
by Fax6n's laws (see (1.1)) by equating the dimensionless force F-* on the sphere to zero to 
give 

0 = ~* = UIc - V + I(a/L*)2(V2U)Ic (6.5) 

o r  

= UIc + ~(a/L*)2(V2U)]c, (6.6) V 

where Ic indicates evaluation at the sphere centre. Regarding the sphere velocity V as a 
function of position we observe from (6.5) that 

V.V = 0, (6.7) 

so that the Eq. (6.3) for the sphere concentration c reduces to 

V .Vc  = 0. (6.8) 

Thus again there is a steady state solution for which the concentration c is a constant every- 
where, there being no tendency for the particles to accumulate in any region (or to leave any 
region) of the flow. It may also be readily shown from (6.5) that the paths of individual sphere 
centres for the two dimensional undisturbed flow considered in §3 are lines given by 

+ ~(a/L*)2V2~ = constant (6.9) 

for which the spiral motion towards or away from a point Q is impossible (since the stream- 
function ¢ is not singular within the region occupied by the fluid). However note that whilst 
there is, for a suspension undergoing an unbounded flow, no tendency for the spheres to 
accumulate in (or to leave) any region of the flow, the motion of any particular sphere (given 
by (6.8)) is not the same as that of the undisturbed motion of the fluid (with streamlines 
¢ -- constant) so that in general the sphere does move locally across streamlines. 
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Also, even for an undisturbed two-dimensional vortex flow of a fluid bounded at rl = 0 by 
an undeformable free surface (or by a solid wall), a freely moving solid sphere with non-zero 
a / L *  will not have the spiral orbits shown in Fig. 11 (or tend to concentrate at a point Q) if 
the vortex has fore-aft mirror symmetry in the r2 direction, this following directly from the 
symmetry and the linearity of the problem. 

Thus, at zero Reynolds number, for freely moving solid spherical particles to concentrate 
within a vortex (or to leave a vortex) as in §5, it is necessary that (i) the spherical particles 
have non-zero size and that (ii) there is a boundary such as a free surface or solid wall present. 
Also for the situation in which one has a two-dimensional undisturbed flow in the region 
rl > 0 bounded by a free surface or solid wall at rl ffi 0, the vortex should not possess mirror 
symmetry in the r2 direction. 

This predicted phenomenon, of the effect of (free surface or solid) boundaries on the motion 
of solid spherical particles in a prescribed undisturbed flow at zero Reynolds number causing 
the particles to move across streamlines and resulting in certain regions of the flow increasing 
(or decreasing) their concentration of particles, has been observed experimentally in a number 
of different situations. For example, Forgacs et al. [19] and Karnis et al. [20] experimentally 
examined what is known as the 'meniscus effect', in which particles suspended in a liquid 
flowing along a capillary tube behind an advancing meniscus tend to concentrate in a region 
immediately behind the meniscus. This effect is rather similar to that discussed above but 
with a more complicated system of boundaries present. Also it has been observed by Karino 
& Goldsmith [21] that when blood flows from a narrow into a wider radius capillary tube, 
the red blood cells move out of the vortex in the flow behind the tube expansion, leaving the 
vortex devoid of red blood cells. This may occur as a result of boundary effects similar to 
that discussed in this paper, but it is probable that the deformability of the red cells plays a 
role in this phenomenon (see Chaffey et al. [22] ). Recently Gu [23] has reported observing 
experimentally the spiral motion of solid spherical particles into and out of an asymmetric 
vortex in a two dimensional flow bounded by a plane solid wall. This situation is essentially 
the same as that considered in §5 except that the planar boundary is solid rather than being an 
undeformable free surface. 
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